多模態輸入#
本頁教您如何將多模態輸入傳遞給 vLLM 中的 多模態模型。
注意
我們正在積極迭代多模態支援。請參閱 此 RFC 瞭解即將到來的更改,如果您有任何反饋或功能請求,請 在 GitHub 上開啟一個 issue。
離線推理#
要輸入多模態資料,請遵循 vllm.inputs.PromptType
中的此模式
prompt
:prompt 應遵循 HuggingFace 上記錄的格式。multi_modal_data
:這是一個字典,它遵循vllm.multimodal.inputs.MultiModalDataDict
中定義的模式。
影像輸入#
您可以將單個影像傳遞到多模態字典的 'image'
欄位,如下例所示
from vllm import LLM
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
# Refer to the HuggingFace repo for the correct format to use
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
# Load the image using PIL.Image
image = PIL.Image.open(...)
# Single prompt inference
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {"image": image},
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
# Batch inference
image_1 = PIL.Image.open(...)
image_2 = PIL.Image.open(...)
outputs = llm.generate(
[
{
"prompt": "USER: <image>\nWhat is the content of this image?\nASSISTANT:",
"multi_modal_data": {"image": image_1},
},
{
"prompt": "USER: <image>\nWhat's the color of this image?\nASSISTANT:",
"multi_modal_data": {"image": image_2},
}
]
)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
完整示例:examples/offline_inference/vision_language.py
要在同一文字 prompt 中替換多個影像,您可以傳遞影像列表
from vllm import LLM
llm = LLM(
model="microsoft/Phi-3.5-vision-instruct",
trust_remote_code=True, # Required to load Phi-3.5-vision
max_model_len=4096, # Otherwise, it may not fit in smaller GPUs
limit_mm_per_prompt={"image": 2}, # The maximum number to accept
)
# Refer to the HuggingFace repo for the correct format to use
prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n"
# Load the images using PIL.Image
image1 = PIL.Image.open(...)
image2 = PIL.Image.open(...)
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {
"image": [image1, image2]
},
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
完整示例:examples/offline_inference/vision_language_multi_image.py
多影像輸入可以擴充套件到執行影片字幕。我們使用 Qwen2-VL 展示這一點,因為它支援影片
from vllm import LLM
# Specify the maximum number of frames per video to be 4. This can be changed.
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
# Create the request payload.
video_frames = ... # load your video making sure it only has the number of frames specified earlier.
message = {
"role": "user",
"content": [
{"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."},
],
}
for i in range(len(video_frames)):
base64_image = encode_image(video_frames[i]) # base64 encoding.
new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
message["content"].append(new_image)
# Perform inference and log output.
outputs = llm.chat([message])
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
影片輸入#
您可以將 NumPy 陣列列表直接傳遞到多模態字典的 'video'
欄位,而不是使用多影像輸入。
音訊輸入#
您可以將元組 (array, sampling_rate)
傳遞到多模態字典的 'audio'
欄位。
嵌入輸入#
要將屬於資料型別(即影像、影片或音訊)的預計算嵌入直接輸入到語言模型,請將形狀為 (num_items, feature_size, LM 的 hidden_size)
的張量傳遞到多模態字典的相應欄位。
from vllm import LLM
# Inference with image embeddings as input
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
# Refer to the HuggingFace repo for the correct format to use
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
# Embeddings for single image
# torch.Tensor of shape (1, image_feature_size, hidden_size of LM)
image_embeds = torch.load(...)
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {"image": image_embeds},
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
對於 Qwen2-VL 和 MiniCPM-V,我們接受與嵌入一起的附加引數
# Construct the prompt based on your model
prompt = ...
# Embeddings for multiple images
# torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM)
image_embeds = torch.load(...)
# Qwen2-VL
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
mm_data = {
"image": {
"image_embeds": image_embeds,
# image_grid_thw is needed to calculate positional encoding.
"image_grid_thw": torch.load(...), # torch.Tensor of shape (1, 3),
}
}
# MiniCPM-V
llm = LLM("openbmb/MiniCPM-V-2_6", trust_remote_code=True, limit_mm_per_prompt={"image": 4})
mm_data = {
"image": {
"image_embeds": image_embeds,
# image_sizes is needed to calculate details of the sliced image.
"image_sizes": [image.size for image in images], # list of image sizes
}
}
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": mm_data,
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
線上服務#
我們的 OpenAI 相容伺服器透過 Chat Completions API 接受多模態資料。
重要
使用 Chat Completions API 需要 聊天模板。
雖然大多數模型都帶有聊天模板,但對於其他模型,您必須自己定義一個。聊天模板可以根據模型 HuggingFace 倉庫上的文件推斷出來。例如,LLaVA-1.5 (llava-hf/llava-1.5-7b-hf
) 需要一個聊天模板,可以在這裡找到:examples/template_llava.jinja
影像輸入#
影像輸入根據 OpenAI Vision API 獲得支援。這是一個使用 Phi-3.5-Vision 的簡單示例。
首先,啟動 OpenAI 相容伺服器
vllm serve microsoft/Phi-3.5-vision-instruct --task generate \
--trust-remote-code --max-model-len 4096 --limit-mm-per-prompt image=2
然後,您可以按如下方式使用 OpenAI 客戶端
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "https://:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
# Single-image input inference
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
chat_response = client.chat.completions.create(
model="microsoft/Phi-3.5-vision-instruct",
messages=[{
"role": "user",
"content": [
# NOTE: The prompt formatting with the image token `<image>` is not needed
# since the prompt will be processed automatically by the API server.
{"type": "text", "text": "What’s in this image?"},
{"type": "image_url", "image_url": {"url": image_url}},
],
}],
)
print("Chat completion output:", chat_response.choices[0].message.content)
# Multi-image input inference
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
chat_response = client.chat.completions.create(
model="microsoft/Phi-3.5-vision-instruct",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": "What are the animals in these images?"},
{"type": "image_url", "image_url": {"url": image_url_duck}},
{"type": "image_url", "image_url": {"url": image_url_lion}},
],
}],
)
print("Chat completion output:", chat_response.choices[0].message.content)
完整示例:examples/online_serving/openai_chat_completion_client_for_multimodal.py
提示
vLLM 也支援從本地檔案路徑載入:您可以在啟動 API 伺服器/引擎時透過 --allowed-local-media-path
指定允許的本地媒體路徑,並在 API 請求中將檔案路徑作為 url
傳遞。
提示
無需在 API 請求的文字內容中放置影像佔位符 - 它們已由影像內容表示。實際上,您可以透過交錯文字和影像內容將影像佔位符放置在文字中間。
注意
預設情況下,透過 HTTP URL 獲取影像的超時時間為 5
秒。您可以透過設定環境變數來覆蓋此設定
export VLLM_IMAGE_FETCH_TIMEOUT=<timeout>
影片輸入#
除了 image_url
之外,您還可以透過 video_url
傳遞影片檔案。這是一個使用 LLaVA-OneVision 的簡單示例。
首先,啟動 OpenAI 相容伺服器
vllm serve llava-hf/llava-onevision-qwen2-0.5b-ov-hf --task generate --max-model-len 8192
然後,您可以按如下方式使用 OpenAI 客戶端
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "https://:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4"
## Use video url in the payload
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this video?"
},
{
"type": "video_url",
"video_url": {
"url": video_url
},
},
],
}],
model=model,
max_completion_tokens=64,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from image url:", result)
完整示例:examples/online_serving/openai_chat_completion_client_for_multimodal.py
注意
預設情況下,透過 HTTP URL 獲取影片的超時時間為 30
秒。您可以透過設定環境變數來覆蓋此設定
export VLLM_VIDEO_FETCH_TIMEOUT=<timeout>
音訊輸入#
音訊輸入根據 OpenAI Audio API 獲得支援。這是一個使用 Ultravox-v0.5-1B 的簡單示例。
首先,啟動 OpenAI 相容伺服器
vllm serve fixie-ai/ultravox-v0_5-llama-3_2-1b
然後,您可以按如下方式使用 OpenAI 客戶端
import base64
import requests
from openai import OpenAI
from vllm.assets.audio import AudioAsset
def encode_base64_content_from_url(content_url: str) -> str:
"""Encode a content retrieved from a remote url to base64 format."""
with requests.get(content_url) as response:
response.raise_for_status()
result = base64.b64encode(response.content).decode('utf-8')
return result
openai_api_key = "EMPTY"
openai_api_base = "https://:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
# Any format supported by librosa is supported
audio_url = AudioAsset("winning_call").url
audio_base64 = encode_base64_content_from_url(audio_url)
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role": "user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "input_audio",
"input_audio": {
"data": audio_base64,
"format": "wav"
},
},
],
}],
model=model,
max_completion_tokens=64,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from input audio:", result)
或者,您可以傳遞 audio_url
,它是影像輸入的 image_url
的音訊對應物
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role": "user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "audio_url",
"audio_url": {
"url": audio_url
},
},
],
}],
model=model,
max_completion_tokens=64,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from audio url:", result)
完整示例:examples/online_serving/openai_chat_completion_client_for_multimodal.py
注意
預設情況下,透過 HTTP URL 獲取音訊的超時時間為 10
秒。您可以透過設定環境變數來覆蓋此設定
export VLLM_AUDIO_FETCH_TIMEOUT=<timeout>
嵌入輸入#
要將屬於資料型別(即影像、影片或音訊)的預計算嵌入直接輸入到語言模型,請將形狀張量傳遞到多模態字典的相應欄位。
影像嵌入輸入#
對於影像嵌入,您可以將 base64 編碼的張量傳遞到 image_embeds
欄位。以下示例演示瞭如何將影像嵌入傳遞到 OpenAI 伺服器
image_embedding = torch.load(...)
grid_thw = torch.load(...) # Required by Qwen/Qwen2-VL-2B-Instruct
buffer = io.BytesIO()
torch.save(image_embedding, buffer)
buffer.seek(0)
binary_data = buffer.read()
base64_image_embedding = base64.b64encode(binary_data).decode('utf-8')
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
# Basic usage - this is equivalent to the LLaVA example for offline inference
model = "llava-hf/llava-1.5-7b-hf"
embeds = {
"type": "image_embeds",
"image_embeds": f"{base64_image_embedding}"
}
# Pass additional parameters (available to Qwen2-VL and MiniCPM-V)
model = "Qwen/Qwen2-VL-2B-Instruct"
embeds = {
"type": "image_embeds",
"image_embeds": {
"image_embeds": f"{base64_image_embedding}" , # Required
"image_grid_thw": f"{base64_image_grid_thw}" # Required by Qwen/Qwen2-VL-2B-Instruct
},
}
model = "openbmb/MiniCPM-V-2_6"
embeds = {
"type": "image_embeds",
"image_embeds": {
"image_embeds": f"{base64_image_embedding}" , # Required
"image_sizes": f"{base64_image_sizes}" # Required by openbmb/MiniCPM-V-2_6
},
}
chat_completion = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{
"type": "text",
"text": "What's in this image?",
},
embeds,
],
},
],
model=model,
)
注意
只有一個訊息可以包含 {"type": "image_embeds"}
。如果與需要附加引數的模型一起使用,您還必須為每個引數提供一個張量,例如 image_grid_thw
、image_sizes
等。