跳到內容

推理輸出

vLLM 支援 DeepSeek R1 等推理模型,這些模型旨在生成包含推理步驟和最終結論的輸出。

推理模型在其輸出中返回一個額外的 reasoning_content 欄位,該欄位包含導致最終結論的推理步驟。此欄位在其他模型的輸出中不存在。

支援的模型

vLLM 目前支援以下推理模型

模型系列 解析器名稱 結構化輸出支援 工具呼叫
DeepSeek R1 系列 deepseek_r1 guided_json, guided_regex
QwQ-32B deepseek_r1 guided_json, guided_regex
IBM Granite 3.2 語言模型 granite
Qwen3 系列 qwen3 guided_json, guided_regex
Hunyuan A13B 系列 hunyuan_a13b guided_json, guided_regex

注意

IBM Granite 3.2 的推理功能預設停用;要啟用它,您還必須在 chat_template_kwargs 中傳遞 thinking=True。Qwen3 系列的推理功能預設啟用。要停用它,您必須在 chat_template_kwargs 中傳遞 enable_thinking=False

快速入門

要使用推理模型,在向聊天補全端點發出請求時,您需要指定 --reasoning-parser 標誌。--reasoning-parser 標誌指定用於從模型輸出中提取推理內容的推理解析器。

vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
    --reasoning-parser deepseek_r1

接下來,向模型發出請求,該請求應在響應中返回推理內容。

程式碼
from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "https://:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
# For Qwen3 series, if you want to disable thinking in reasoning mode, add:
# extra_body={"chat_template_kwargs": {"enable_thinking": False}}
response = client.chat.completions.create(model=model, messages=messages)

reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content

print("reasoning_content:", reasoning_content)
print("content:", content)

reasoning_content 欄位包含導致最終結論的推理步驟,而 content 欄位包含最終結論。

流式聊天補全

流式聊天補全也支援推理模型。reasoning_content 欄位在 聊天補全響應塊 中的 delta 欄位中可用。

Json
{
    "id": "chatcmpl-123",
    "object": "chat.completion.chunk",
    "created": 1694268190,
    "model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
    "system_fingerprint": "fp_44709d6fcb",
    "choices": [
        {
            "index": 0,
            "delta": {
                "role": "assistant",
                "reasoning_content": "is",
            },
            "logprobs": null,
            "finish_reason": null
        }
    ]
}

OpenAI Python 客戶端庫不正式支援流式輸出的 reasoning_content 屬性。但客戶端支援響應中的額外屬性。您可以使用 hasattr 檢查響應中是否存在 reasoning_content 屬性。例如:

程式碼
from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "https://:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
# For Qwen3 series, if you want to disable thinking in reasoning mode, add:
# extra_body={"chat_template_kwargs": {"enable_thinking": False}}
stream = client.chat.completions.create(model=model,
                                        messages=messages,
                                        stream=True)

print("client: Start streaming chat completions...")
printed_reasoning_content = False
printed_content = False

for chunk in stream:
    reasoning_content = None
    content = None
    # Check the content is reasoning_content or content
    if hasattr(chunk.choices[0].delta, "reasoning_content"):
        reasoning_content = chunk.choices[0].delta.reasoning_content
    elif hasattr(chunk.choices[0].delta, "content"):
        content = chunk.choices[0].delta.content

    if reasoning_content is not None:
        if not printed_reasoning_content:
            printed_reasoning_content = True
            print("reasoning_content:", end="", flush=True)
        print(reasoning_content, end="", flush=True)
    elif content is not None:
        if not printed_content:
            printed_content = True
            print("\ncontent:", end="", flush=True)
        # Extract and print the content
        print(content, end="", flush=True)

請記住,在訪問 reasoning_content 之前,請檢查它是否存在於響應中。您可以檢視 示例

工具呼叫

當同時啟用工具呼叫和推理解析器時,推理內容也可用。此外,工具呼叫只從 content 欄位解析函式,而不從 reasoning_content 解析。

程式碼
from openai import OpenAI

client = OpenAI(base_url="https://:8000/v1", api_key="dummy")

tools = [{
    "type": "function",
    "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
                "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
            },
            "required": ["location", "unit"]
        }
    }
}]

response = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
    tools=tools,
    tool_choice="auto"
)

print(response)
tool_call = response.choices[0].message.tool_calls[0].function

print(f"reasoning_content: {response.choices[0].message.reasoning_content}")
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")

有關更多示例,請參閱 examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py

侷限性

  • 推理內容僅適用於線上服務(online serving)的聊天補全端點(/v1/chat/completions)。

如何支援新的推理模型

您可以新增一個新的 ReasoningParser,類似於 vllm/reasoning/deepseek_r1_reasoning_parser.py

程式碼
# import the required packages

from vllm.reasoning import ReasoningParser, ReasoningParserManager
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
                                            DeltaMessage)

# define a reasoning parser and register it to vllm
# the name list in register_module can be used
# in --reasoning-parser.
@ReasoningParserManager.register_module(["example"])
class ExampleParser(ReasoningParser):
    def __init__(self, tokenizer: AnyTokenizer):
        super().__init__(tokenizer)

    def extract_reasoning_content_streaming(
        self,
        previous_text: str,
        current_text: str,
        delta_text: str,
        previous_token_ids: Sequence[int],
        current_token_ids: Sequence[int],
        delta_token_ids: Sequence[int],
    ) -> Union[DeltaMessage, None]:
        """
        Instance method that should be implemented for extracting reasoning
        from an incomplete response; for use when handling reasoning calls and
        streaming. Has to be an instance method because  it requires state -
        the current tokens/diffs, but also the information about what has
        previously been parsed and extracted (see constructor)
        """

    def extract_reasoning_content(
            self, model_output: str, request: ChatCompletionRequest
    ) -> tuple[Optional[str], Optional[str]]:
        """
        Extract reasoning content from a complete model-generated string.

        Used for non-streaming responses where we have the entire model response
        available before sending to the client.

        Parameters:
        model_output: str
            The model-generated string to extract reasoning content from.

        request: ChatCompletionRequest
            The request object that was used to generate the model_output.

        Returns:
        tuple[Optional[str], Optional[str]]
            A tuple containing the reasoning content and the content.
        """

此外,為了啟用結構化輸出,您需要建立一個新的 Reasoner,類似於 vllm/reasoning/deepseek_r1_reasoning_parser.py 中的。

程式碼
@dataclass
class DeepSeekReasoner(Reasoner):
    """
    Reasoner for DeepSeek R series models.
    """
    start_token_id: int
    end_token_id: int

    start_token: str = "<think>"
    end_token: str = "</think>"

    @classmethod
    def from_tokenizer(cls, tokenizer: PreTrainedTokenizer) -> Reasoner:
        return cls(start_token_id=tokenizer.encode(
            "<think>", add_special_tokens=False)[0],
                end_token_id=tokenizer.encode("</think>",
                                                add_special_tokens=False)[0])

    def is_reasoning_end(self, input_ids: list[int]) -> bool:
        return self.end_token_id in input_ids
    ...

xgrammar 這樣的結構化輸出引擎將使用 end_token_id 來檢查模型輸出中是否存在推理內容,如果存在則跳過結構化輸出。

最後,您可以透過使用 --reasoning-parser 標誌來為模型啟用推理功能。

vllm serve <model_tag> --reasoning-parser example