跳到內容

來源 examples/offline_inference/basic

基礎

LLM 類提供了進行離線推理的主要 Python 介面,即無需獨立的模型推理伺服器即可與模型互動。

用法

此示例中的第一個指令碼展示了 vLLM 最基本的使用方法。如果您是 Python 和 vLLM 的新手,應該從這裡開始。

python examples/offline_inference/basic/basic.py

其餘指令碼包含一個引數解析器,您可以使用它來傳遞任何與LLM相容的引數。嘗試使用 --help 執行指令碼以獲取所有可用引數的列表。

python examples/offline_inference/basic/classify.py
python examples/offline_inference/basic/embed.py
python examples/offline_inference/basic/score.py

聊天和生成指令碼還接受取樣引數max_tokenstemperaturetop_ptop_k

python examples/offline_inference/basic/chat.py
python examples/offline_inference/basic/generate.py

功能

在支援傳遞引數的指令碼中,您可以嘗試以下功能。

預設生成配置

--generation-config 引數指定呼叫 LLM.get_default_sampling_params() 時生成配置的載入位置。如果設定為“auto”,生成配置將從模型路徑載入。如果設定為資料夾路徑,生成配置將從指定的資料夾路徑載入。如果未提供,將使用 vLLM 預設值。

如果在生成配置中指定了 max_new_tokens,則它會為所有請求設定伺服器範圍的輸出令牌數量限制。

使用以下引數自行嘗試

--generation-config auto

量化

AQLM

vLLM 支援使用 AQLM 量化的模型。

透過將以下模型之一傳遞給 --model 引數來親自嘗試一個

  • ISTA-DASLab/Llama-2-7b-AQLM-2Bit-1x16-hf
  • ISTA-DASLab/Llama-2-7b-AQLM-2Bit-2x8-hf
  • ISTA-DASLab/Llama-2-13b-AQLM-2Bit-1x16-hf
  • ISTA-DASLab/Mixtral-8x7b-AQLM-2Bit-1x16-hf
  • BlackSamorez/TinyLlama-1_1B-Chat-v1_0-AQLM-2Bit-1x16-hf

其中一些模型對於單個 GPU 來說可能過大。您可以透過將 --tensor-parallel-size 設定為所需 GPU 的數量來將它們分配到多個 GPU 上。

GGUF

vLLM 支援使用 GGUF 量化的模型。

透過下載量化的 GGUF 模型並使用以下引數自行嘗試

from huggingface_hub import hf_hub_download
repo_id = "bartowski/Phi-3-medium-4k-instruct-GGUF"
filename = "Phi-3-medium-4k-instruct-IQ2_M.gguf"
print(hf_hub_download(repo_id, filename=filename))
--model {local-path-printed-above} --tokenizer microsoft/Phi-3-medium-4k-instruct

CPU 解除安裝

--cpu-offload-gb 引數可以看作是增加 GPU 記憶體大小的一種虛擬方式。例如,如果您有一個 24 GB 的 GPU 並將其設定為 10,您虛擬地可以將其視為一個 34 GB 的 GPU。然後,您可以載入一個 13B 模型,該模型使用 BF16 權重,至少需要 26GB GPU 記憶體。請注意,這需要快速的 CPU-GPU 互連,因為模型的一部分在每個模型前向傳播中會即時從 CPU 記憶體載入到 GPU 記憶體中。

使用以下引數自行嘗試

--model meta-llama/Llama-2-13b-chat-hf --cpu-offload-gb 10

示例材料

basic.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

from vllm import LLM, SamplingParams

# Sample prompts.
prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)


def main():
    # Create an LLM.
    llm = LLM(model="facebook/opt-125m")
    # Generate texts from the prompts.
    # The output is a list of RequestOutput objects
    # that contain the prompt, generated text, and other information.
    outputs = llm.generate(prompts, sampling_params)
    # Print the outputs.
    print("\nGenerated Outputs:\n" + "-" * 60)
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Prompt:    {prompt!r}")
        print(f"Output:    {generated_text!r}")
        print("-" * 60)


if __name__ == "__main__":
    main()
chat.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser


def create_parser():
    parser = FlexibleArgumentParser()
    # Add engine args
    EngineArgs.add_cli_args(parser)
    parser.set_defaults(model="meta-llama/Llama-3.2-1B-Instruct")
    # Add sampling params
    sampling_group = parser.add_argument_group("Sampling parameters")
    sampling_group.add_argument("--max-tokens", type=int)
    sampling_group.add_argument("--temperature", type=float)
    sampling_group.add_argument("--top-p", type=float)
    sampling_group.add_argument("--top-k", type=int)
    # Add example params
    parser.add_argument("--chat-template-path", type=str)

    return parser


def main(args: dict):
    # Pop arguments not used by LLM
    max_tokens = args.pop("max_tokens")
    temperature = args.pop("temperature")
    top_p = args.pop("top_p")
    top_k = args.pop("top_k")
    chat_template_path = args.pop("chat_template_path")

    # Create an LLM
    llm = LLM(**args)

    # Create sampling params object
    sampling_params = llm.get_default_sampling_params()
    if max_tokens is not None:
        sampling_params.max_tokens = max_tokens
    if temperature is not None:
        sampling_params.temperature = temperature
    if top_p is not None:
        sampling_params.top_p = top_p
    if top_k is not None:
        sampling_params.top_k = top_k

    def print_outputs(outputs):
        print("\nGenerated Outputs:\n" + "-" * 80)
        for output in outputs:
            prompt = output.prompt
            generated_text = output.outputs[0].text
            print(f"Prompt: {prompt!r}\n")
            print(f"Generated text: {generated_text!r}")
            print("-" * 80)

    print("=" * 80)

    # In this script, we demonstrate how to pass input to the chat method:
    conversation = [
        {"role": "system", "content": "You are a helpful assistant"},
        {"role": "user", "content": "Hello"},
        {"role": "assistant", "content": "Hello! How can I assist you today?"},
        {
            "role": "user",
            "content": "Write an essay about the importance of higher education.",
        },
    ]
    outputs = llm.chat(conversation, sampling_params, use_tqdm=False)
    print_outputs(outputs)

    # You can run batch inference with llm.chat API
    conversations = [conversation for _ in range(10)]

    # We turn on tqdm progress bar to verify it's indeed running batch inference
    outputs = llm.chat(conversations, sampling_params, use_tqdm=True)
    print_outputs(outputs)

    # A chat template can be optionally supplied.
    # If not, the model will use its default chat template.
    if chat_template_path is not None:
        with open(chat_template_path) as f:
            chat_template = f.read()

        outputs = llm.chat(
            conversations,
            sampling_params,
            use_tqdm=False,
            chat_template=chat_template,
        )


if __name__ == "__main__":
    parser = create_parser()
    args: dict = vars(parser.parse_args())
    main(args)
classify.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

from argparse import Namespace

from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser


def parse_args():
    parser = FlexibleArgumentParser()
    parser = EngineArgs.add_cli_args(parser)
    # Set example specific arguments
    parser.set_defaults(
        model="jason9693/Qwen2.5-1.5B-apeach", task="classify", enforce_eager=True
    )
    return parser.parse_args()


def main(args: Namespace):
    # Sample prompts.
    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]

    # Create an LLM.
    # You should pass task="classify" for classification models
    llm = LLM(**vars(args))

    # Generate logits. The output is a list of ClassificationRequestOutputs.
    outputs = llm.classify(prompts)

    # Print the outputs.
    print("\nGenerated Outputs:\n" + "-" * 60)
    for prompt, output in zip(prompts, outputs):
        probs = output.outputs.probs
        probs_trimmed = (str(probs[:16])[:-1] + ", ...]") if len(probs) > 16 else probs
        print(
            f"Prompt: {prompt!r} \n"
            f"Class Probabilities: {probs_trimmed} (size={len(probs)})"
        )
        print("-" * 60)


if __name__ == "__main__":
    args = parse_args()
    main(args)
embed.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

from argparse import Namespace

from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser


def parse_args():
    parser = FlexibleArgumentParser()
    parser = EngineArgs.add_cli_args(parser)
    # Set example specific arguments
    parser.set_defaults(
        model="intfloat/e5-mistral-7b-instruct",
        task="embed",
        enforce_eager=True,
        max_model_len=1024,
    )
    return parser.parse_args()


def main(args: Namespace):
    # Sample prompts.
    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]

    # Create an LLM.
    # You should pass task="embed" for embedding models
    llm = LLM(**vars(args))

    # Generate embedding. The output is a list of EmbeddingRequestOutputs.
    outputs = llm.embed(prompts)

    # Print the outputs.
    print("\nGenerated Outputs:\n" + "-" * 60)
    for prompt, output in zip(prompts, outputs):
        embeds = output.outputs.embedding
        embeds_trimmed = (
            (str(embeds[:16])[:-1] + ", ...]") if len(embeds) > 16 else embeds
        )
        print(f"Prompt: {prompt!r} \nEmbeddings: {embeds_trimmed} (size={len(embeds)})")
        print("-" * 60)


if __name__ == "__main__":
    args = parse_args()
    main(args)
generate.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser


def create_parser():
    parser = FlexibleArgumentParser()
    # Add engine args
    EngineArgs.add_cli_args(parser)
    parser.set_defaults(model="meta-llama/Llama-3.2-1B-Instruct")
    # Add sampling params
    sampling_group = parser.add_argument_group("Sampling parameters")
    sampling_group.add_argument("--max-tokens", type=int)
    sampling_group.add_argument("--temperature", type=float)
    sampling_group.add_argument("--top-p", type=float)
    sampling_group.add_argument("--top-k", type=int)

    return parser


def main(args: dict):
    # Pop arguments not used by LLM
    max_tokens = args.pop("max_tokens")
    temperature = args.pop("temperature")
    top_p = args.pop("top_p")
    top_k = args.pop("top_k")

    # Create an LLM
    llm = LLM(**args)

    # Create a sampling params object
    sampling_params = llm.get_default_sampling_params()
    if max_tokens is not None:
        sampling_params.max_tokens = max_tokens
    if temperature is not None:
        sampling_params.temperature = temperature
    if top_p is not None:
        sampling_params.top_p = top_p
    if top_k is not None:
        sampling_params.top_k = top_k

    # Generate texts from the prompts. The output is a list of RequestOutput
    # objects that contain the prompt, generated text, and other information.
    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]
    outputs = llm.generate(prompts, sampling_params)
    # Print the outputs.
    print("-" * 50)
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
        print("-" * 50)


if __name__ == "__main__":
    parser = create_parser()
    args: dict = vars(parser.parse_args())
    main(args)
score.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

from argparse import Namespace

from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser


def parse_args():
    parser = FlexibleArgumentParser()
    parser = EngineArgs.add_cli_args(parser)
    # Set example specific arguments
    parser.set_defaults(
        model="BAAI/bge-reranker-v2-m3", task="score", enforce_eager=True
    )
    return parser.parse_args()


def main(args: Namespace):
    # Sample prompts.
    text_1 = "What is the capital of France?"
    texts_2 = [
        "The capital of Brazil is Brasilia.",
        "The capital of France is Paris.",
    ]

    # Create an LLM.
    # You should pass task="score" for cross-encoder models
    llm = LLM(**vars(args))

    # Generate scores. The output is a list of ScoringRequestOutputs.
    outputs = llm.score(text_1, texts_2)

    # Print the outputs.
    print("\nGenerated Outputs:\n" + "-" * 60)
    for text_2, output in zip(texts_2, outputs):
        score = output.outputs.score
        print(f"Pair: {[text_1, text_2]!r} \nScore: {score}")
        print("-" * 60)


if __name__ == "__main__":
    args = parse_args()
    main(args)